Section - A

1. (i). When converting from a Norton-equivalent circuit to a Thevenin equivalent circuit:
(a) R_{N} and $R_{T h}$ have the same value
(b) R_{N} will always be larger than R_{Th}
(c) I_{N} is short-circuited to find $V_{T H}$
(d) $\mathrm{V}_{T H}$ is short-circuited

Ans: (a) \mathbf{R}_{N} and $\mathbf{R}_{\text {Th }}$ have the same value
(ii). The resistance of an open circuit is
(a) approximately 0
(b) infinitely high
(c) very low
(d) none of the above

Ans: (b) infinitely high

(iii). If a $10 \mathrm{~A} l_{1}$ and a $3 \mathrm{~A} I_{2}$ flow into point X , how much current must flow away from point X ?
(a) 7A
(b) 30 A
(c) 13 A
(d) this is impossible to determine

Ans: (c) 13A
(iv). To compare the phase angle between two waveforms, both must have
(a) the same amplitude (b)
(b) the same frequency (
(c) different frequencies
(d) both a and b

Ans: (b) the same frequency
(v). For an ac waveform, the period, T refers to
(a) the number of complete cycles per second (b) the length of time required to complete one cycle (c) the time it takes for the waveform to reach its peak value (d) none of the above

Ans: (b) the length of time required to complete one cycle

(vi). A value of $-j 500 \Omega$ represents
(a) 500Ω of inductive reactance
(b) 500Ω of capacitive reactance
(c) 500Ω of resistance
(d) 500Ω of conductance

Ans: (b) 500Ω of capacitive reactance

(vii). What is the resistance, R, of an ac circuit whose impedance, Z is $300 \angle 53.13^{\circ} \Omega$?
(a) 240Ω
(b) 180Ω
(c) 270Ω
(d) 60Ω

Ans: (b) 180Ω

(viii). The impedance of a parallel LC circuit at resonance is
(a) zero
(b) maximum
(c) minimum
(d) equal to the r_{s} of the coil

Ans: (b) Maximum

(ix). When either L or C is increased, the resonant frequency of an LC circuit
(a) decreases
(b) increases
(c) doesn't change
(d) this is impossible to determine

Ans: (a) decreases
(x). The impedance of the parallel $R L C$ circuit is given by
(a). $\frac{1}{R}+\frac{1}{\omega L}+\omega C$
(b) $\left[\frac{1}{R^{2}}+\left(\omega C-\frac{1}{\omega L}\right)^{2}\right]^{-1 / 2}$
(c) $\frac{1}{R}+\left(\frac{1}{\omega L}-\frac{1}{\omega C}\right)$
(d) $\left[R^{2}+\left(\omega L-\frac{1}{\omega c}\right)^{2}\right]^{-1 / 2}$

Ans: ${ }^{\text {(b) }}\left[\frac{1}{R^{2}}+\left(\omega C-\frac{1}{\omega L}\right)^{2}\right]^{-1 / 2}$

Section - B

2. Deduce the law of combination of resistors in series and in parallel.

Ans: i) Resistors in series: Consider two resistors connected in series, as shown in Fig. 1. It is clear that the same current Iflows through both resistors. Suppose that the potential drop from point B to point A is V. This drop is the sum of the potential drops V_{1} and V_{2} across the two resistors R_{1} and R_{2}, respectively. Thus, $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}$.
According to Ohm's law, the equivalent resistance $R_{\text {eq }}$ between B and A is the ratio of the potential drop V across these points and the current I which flows between them. Thus,

$$
R_{e q}=\frac{V}{I}=\frac{V_{1}+V_{2}}{I}=\frac{V_{1}}{I}+\frac{V_{2}}{I}=R_{1}+R_{2}
$$

giving

$$
R_{e q}=R_{1}+R_{2}
$$

The equivalent resistance of two or more resistors connected in series is the sum of the individual resistances.
For N resistors connected in series, above Equation generalizes to $R_{e q}=\sum_{i=1}^{N} R_{i}$

Fig. 1: Two resistors connected in series

Fig. 2: Two resistors connected in parallel
ii) Resistors in parallel: Consider two resistors connected in parallel, as shown in Fig. 2. It is clear, from the figure, that the potential drop V across the two resistors is the same. In general, however, the currents I_{1} and I_{2} which flow through resistors R_{1} and R_{2}, respectively, are different. According to Ohm's law, the equivalent resistance $R_{e q}$ between B and A is the ratio of the potential drop V across these points and the current I which flows between them. This current must equal the sum of the currents I_{1} and I_{2} flowing through the two resistors, otherwise charge would build up at one or both of the junctions in the circuit.

Thus,

$$
I=I_{1}+I_{2}
$$

It follows that $\quad \frac{1}{R_{e q}}=\frac{I}{V}=\frac{I_{1}+I_{2}}{V}=\frac{I_{1}}{V}+\frac{I_{2}}{V}$
giving

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Clearly, the reciprocal of the equivalent resistance of two resistances connected in parallel is the sum of the reciprocals of the individual resistances.
For N resistors connected in parallel, above equation generalizes to $\frac{1}{R_{e q}}=\sum_{i=1}^{N} \frac{1}{R_{i}}$
3. State and explain Kirchhoff's law with suitable examples.

Ans: Kirchhoff 's Current Law (KCL): The algebraic sum of the currents entering and leaving any point in a circuit must equal zero. Or stated another way, the algebraic sum of the currents into any point of the circuit must equal the algebraic sum of the currents out of that point. An algebraic sum means combining positive and negative values. i.e.

$$
\sum I=0
$$

Fig. 1

Fig. 2

Example, in Fig.1, we can write the currents as
$I_{A}+I_{B}-I_{C}=0$
or
$5 A+3 A-8 A=0$
Currents I_{A} and I_{B} are positive terms because these currents flow into P, but I_{C}, directed out, is negative.
Kirchhoff 's Voltage Law (KVL): The algebraic sum of the voltages around any closed path is zero. If you start from any point at one potential and come back to the same point and the same potential, the difference of potential must be zero. i.e.

$$
\sum V=0
$$

Example: Figure 2 has three loops. The outside loop, starting from point A at the top, through CEFDB, and back to A, includes the voltage drops V_{1}, V_{4}, V_{5} and V_{2} and the source V_{T}.
The inside loop ACDBA includes V_{1}, V_{3}, V_{2}, and V_{T}. The other inside loop, CEFDC with V_{4}, V_{5}, and V_{3}, does not include the voltage source. Consider the voltage equation for the inside loop with V_{T}. In the clockwise direction starting from point A, the algebraic sum of the voltages is $V_{1}+V_{3}+V_{2}-V_{T}=0$
4. For a any network, loop equations are: $8 i_{1}-3 i_{2}-5 i_{3}=5,-3 i_{1}+7 i_{2}=-10$, and $-5 i_{1}+11 i_{3}=-10$. Determine the value of i_{1}, i_{2} and i_{3}.
Ans: For a network, Loop equations given by

$$
\begin{gathered}
8 i_{1}-3 i_{2}-5 i_{3}=5 \\
-3 i_{1}+7 i_{2}=-10 \\
-5 i_{1}+11 i_{3}=-10
\end{gathered}
$$

There are three equations and three unknowns, Using third-order determinants, we have

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
8 & -3 & -5 \\
-3 & 7 & 0 \\
-5 & 0 & 11
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right]=\left[\begin{array}{c}
5 \\
-10 \\
-10
\end{array}\right] } \\
& i_{1}=\frac{\left|\begin{array}{ccc}
5 & -3 & -5 \\
-10 & 7 & 0 \\
-10 & 0 & 11
\end{array}\right|}{\left|\begin{array}{ccc}
8 & -3 & -5 \\
-3 & 7 & 0 \\
-5 & 0 & 11
\end{array}\right|}=-\frac{50}{57}, \quad i_{2}=\frac{\left|\begin{array}{ccc}
8 & 5 & -5 \\
-3 & -10 & 0 \\
-5 & -10 & 11
\end{array}\right|}{\left|\begin{array}{ccc}
8 & -3 & -5 \\
-3 & 7 & 0 \\
-5 & 0 & 11
\end{array}\right|}=-\frac{205}{114}=, \quad i_{3}=\frac{\left|\begin{array}{ccc}
5 & -3 & 5 \\
-10 & 7 & -10 \\
-10 & 0 & -10
\end{array}\right|}{\left|\begin{array}{ccc}
8 & -3 & -5 \\
-3 & 7 & 0 \\
-5 & 0 & 11
\end{array}\right|}=-\frac{445}{342}
\end{aligned}
$$

$$
i_{1}=-0.88, \quad i_{2}=-1.8, \quad i_{3}=-1.30
$$

5. Describe in details the conversion of T to delta sections.

Ans:

Fig. 1: T (tee) and delta (pi) network

Consider fig. 1, to find $Z_{10 C}, Z_{20 C}$ and $Z_{1 S C}$ for both network (T and delta)
Impedance at 1,1, when terminal 2,2 open, $Z_{10 C}=Z_{1}+Z_{3}=\frac{Z_{A}\left(Z_{B}+Z_{C}\right)}{Z_{A}+Z_{B}+Z_{C}}$
Impedance at 2,2, when terminal 1,1 open, $Z_{20 C}=Z_{2}+Z_{3}=\frac{Z_{C}\left(Z_{A}+B\right)}{Z_{A}+Z_{B}+Z_{C}}$
Impedance at 1,1, when terminal 2,2 short circuit, $Z_{1 S C}=Z_{1}+\frac{Z_{2} Z_{3}}{Z_{2}+Z_{3}}=\frac{Z_{A} Z_{B}}{Z_{A}+Z_{B}}$
Subtracting eq.(3) form eq.(1)

$$
\begin{equation*}
Z_{3}-\frac{Z_{2} Z_{3}}{Z_{2}+Z_{3}}=\frac{Z_{A}^{2} Z_{C}}{\left(Z_{A}+Z_{B}\right)\left(Z_{A}+Z_{B}+Z_{C}\right)} \tag{3}
\end{equation*}
$$

Multiply eq. (2) and eq. (4) $\quad Z_{3}^{2}=\frac{Z_{A}^{2} Z_{C}^{2}}{\left(Z_{A}+Z_{B}+Z_{C}\right)^{2}} \Rightarrow Z_{3}=\frac{Z_{A} Z_{C}}{Z_{A}+Z_{B}+Z_{C}}$
Using eq. (5) in eq. (1) and (2) $\quad Z_{1}=\frac{Z_{A} Z_{B}}{Z_{A}+Z_{B}+Z_{C}}, \quad Z_{2}=\frac{Z_{B} Z_{C}}{Z_{A}+Z_{B}+Z_{C}}$
Multiply eq. (2) and eq. (3) $Z_{1} Z_{2}+Z_{3} Z_{2}+Z_{1} Z_{3}=\frac{Z_{A} Z_{B} Z_{C}}{Z_{A}+Z_{B}+Z_{C}}$
Divide eq. (7) by eq. (5) and eq.(6), we get

$$
\begin{equation*}
Z_{A}=\frac{z_{1} Z_{2}+Z_{3} z_{2}+z_{1} z_{3}}{z_{2}}, \quad Z_{B}=\frac{z_{1} Z_{2}+Z_{3} Z_{2}+Z_{1} Z_{3}}{z_{3}}, \quad Z_{C}=\frac{z_{1} Z_{2}+z_{3} z_{2}+Z_{1} z_{3}}{z_{1}} \tag{8}
\end{equation*}
$$

Equation (8) shows conversion between T to delta network.
6. The voltage across a resistor is $\mathrm{V}=100 \sin 377 t$. Find the sinusoidal expression for the current if the resistor is 10Ω. Sketch the curves for V and I .
Ans:

$$
I_{m}=\frac{V_{m}}{R}=\frac{100 \mathrm{~V}}{10 \Omega}=10 \mathrm{~A}
$$

(v and i are in phase), resulting in

$$
i=10 \sin 377 t
$$

The curves are sketched in Fig.

7. What is the difference between the series and parallel resonant circuits?

Ans: Difference between the series and parallel resonant circuits

Series Resonance

Resonance frequency, $f_{r}=\frac{1}{2 \pi \sqrt{L C}}$
Current maximum at f_{r} Impedance (Z) minimum at f_{r} Total impedance $Z=R$

Circuit capacitive below f_{r}, but inductive above f_{r} Voltage drops at L and C are equal and opposite phase
This is acceptor circuit

Parallel Resonance
Resonance frequency, $f_{r}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
Current minimum at f_{r}
Impedance Z maximum at f_{r}
Total impedance $Z=\frac{L}{C R}$
Circuit inductive below f_{r}, but capacitive above f_{r}
Current in L and C equal and opposite phase

This is rejecter circuit
8. For the series resonant circuit of given Fig., find $\mathbf{I}, \mathbf{V}_{R}, \mathbf{V}_{L}$, and \mathbf{V}_{C} at resonance.

Ans: Total impedance in series resonance circuit is

$$
Z_{T}=R+j X_{L}-J X_{C}=2 \Omega
$$

Current in circuit is

$$
I=\frac{E}{Z_{T}}=\frac{10 \mathrm{~V} \angle 0^{\circ}}{2 \Omega}=5 \mathrm{~A} \angle 0^{\circ}
$$

Voltage drop at resistance

$$
V_{R}=E=10 V \angle 0^{\circ}
$$

Voltage drop at inductance

$$
V_{L}=\left(I \angle 0^{\circ}\right)\left(X_{L} \angle 90^{\circ}\right)=50 V \angle 90^{\circ}
$$

Voltage drop at capacitance

$$
V_{C}=\left(I \angle 0^{\circ}\right)\left(X_{C} \angle-90^{\circ}\right)=50 \mathrm{~V} \angle-90^{\circ}
$$

